Sparse stabilization of dynamical systems driven by attraction and avoidance forces
نویسندگان
چکیده
Conditional self-organization and pattern-formation are relevant phenomena arising in biological, social, and economical contexts, and received a growing attention in recent years in mathematical modeling. An important issue related to optimal government strategies is how to design external parsimonious interventions, aiming at enforcing systems to converge to specific patterns. This is in contrast to other models where the players of the systems are allowed to interact freely and are supposed autonomously, either by game rules or by embedded decentralized feedback control rules, to converge to patterns. In this paper we tackle the problem of designing optimal centralized feedback controls for systems of moving particles, subject to mutual attraction and repulsion forces, and friction. Under certain conditions on the attraction and repulsion forces, if the total energy of the system, composed of the sum of its kinetic and potential parts, is below a certain critical threshold, then such systems are known to converge autonomously to the stable configuration of keeping confined and collision avoiding in space, uniformly in time. If the energy is above such a critical level, then the space coherence can be lost. We show that in the latter situation of lost self-organization, one can nevertheless steer the system to return to stable energy levels by feedback controls. Additionally we show that the optimal strategy is necessarily sparse, i.e., the control acts on at most one agents at each time. This is another remarkable example of how homophilious systems are naturally prone to sparse stabilization, explaining the effectiveness of parsimonious interventions of governments in societies.
منابع مشابه
Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملDynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملFinite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay
In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...
متن کاملComparison of Experiential Avoidance, Explicit and Implicit Attraction Beliefs in Obese and Normal Weight Females
Objective: The aim of this study was to compare the experiential avoidance, explicit and implicit attraction beliefs in obese and normal body mass index (BMI) females. Materials and Methods: This was an analytic cross sectional study. About 400 females (between 20-43 years old) were selected from nutrition and obesity clinics by convenience sampling method. The 40 items avoidance questionnaire...
متن کاملRobust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems
This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NHM
دوره 9 شماره
صفحات -
تاریخ انتشار 2014